## Respuesta :

**Answer:**

[tex]\begin{array}{|l|c|c|c|}\cline{1-4} \vphantom{\dfrac12}& \sf Male & \sf Female & \sf Total\\\cline{1-4} \vphantom{\dfrac12}\sf Plays \; pickleball & 74\%& 5\% & 79\%\\\cline{1-4} \vphantom{\dfrac12}\sf Does\;not\;play\; pickleball &4\% & 17\%& 21\%\\\cline{1-4} \vphantom{\dfrac12}\sf Column\;Totals&78\%&22\%& 100\%\\\cline{1-4}\end{array}[/tex]

**Step-by-step explanation:**

Create a blank **frequency table**:

[tex]\begin{array}{|l|c|c|c|}\cline{1-4} \vphantom{\dfrac12}& \sf Male & \sf Female & \sf Total\\\cline{1-4} \vphantom{\dfrac12}\sf Plays \; pickleball & & &\\\cline{1-4} \vphantom{\dfrac12}\sf Does\;not\;play\; pickleball & & &\\\cline{1-4} \vphantom{\dfrac12}\sf Column\;Totals&&& 100\%\\\cline{1-4}\end{array}[/tex]

If **79%** of the participants** played pickleball**, then **21%** of the participants **do not play pickleball**.

Input these **percentages **into the **table**:

[tex]\begin{array}{|l|c|c|c|}\cline{1-4} \vphantom{\dfrac12}& \sf Male & \sf Female & \sf Total\\\cline{1-4} \vphantom{\dfrac12}\sf Plays \; pickleball & & & 79\%\\\cline{1-4} \vphantom{\dfrac12}\sf Does\;not\;play\; pickleball & & & 21\%\\\cline{1-4} \vphantom{\dfrac12}\sf Column\;Totals&&& 100\%\\\cline{1-4}\end{array}[/tex]

Of those who **play pickleball**, **6%** are **female**.

Therefore, of those who **play pickleball**,** 94%** must be **male**.

The total percentage of those who play pickleball is 79%, so find 6% and 94% of 79%:

[tex]\begin{aligned}\textsf{Plays pickleball (female)}&=6\% \; \sf of \; 79\%\\&=0.06 \times 0.79\\&=0.0474\\&=5\%\; \sf (nearest\;percent)\end{aligned}[/tex]

[tex]\begin{aligned}\textsf{Plays pickleball (male)}&=94\% \; \sf of \; 79\%\\&=0.94 \times 0.79\\&=0.7426\\&=74\%\; \sf (nearest\;percent)\end{aligned}[/tex]

Input the found **percentages **into the **table**:

[tex]\begin{array}{|l|c|c|c|}\cline{1-4} \vphantom{\dfrac12}& \sf Male & \sf Female & \sf Total\\\cline{1-4} \vphantom{\dfrac12}\sf Plays \; pickleball & 74\%& 5\% & 79\%\\\cline{1-4} \vphantom{\dfrac12}\sf Does\;not\;play\; pickleball & & & 21\%\\\cline{1-4} \vphantom{\dfrac12}\sf Column\;Totals&&& 100\%\\\cline{1-4}\end{array}[/tex]

Of those who **do not play pickleball**, **21%** are **male**.

Therefore, of those who **do not play pickleball**, **79%** must be **female**.

The total percentage of those who do not play pickleball is 21%, so find 21% and 79% of 21%:

[tex]\begin{aligned}\textsf{Does not play pickleball (male)}&=21\% \; \sf of \; 21\%\\&=0.21 \times 0.21 \\&=0.0441\\&=4\%\; \sf (nearest\;percent)\end{aligned}[/tex]

[tex]\begin{aligned}\textsf{Does not play pickleball (female)}&=79\% \; \sf of \; 21\%\\&=0.79 \times 0.21\\&=0.1659\\&=17\%\; \sf (nearest\;percent)\end{aligned}[/tex]

Input the found **percentages **into the **table **and calculate the **column totals**:

[tex]\begin{array}{|l|c|c|c|}\cline{1-4} \vphantom{\dfrac12}& \sf Male & \sf Female & \sf Total\\\cline{1-4} \vphantom{\dfrac12}\sf Plays \; pickleball & 74\%& 5\% & 79\%\\\cline{1-4} \vphantom{\dfrac12}\sf Does\;not\;play\; pickleball &4\% & 17\%& 21\%\\\cline{1-4} \vphantom{\dfrac12}\sf Column\;Totals&78\%&22\%& 100\%\\\cline{1-4}\end{array}[/tex]