A 56.0 g ball of copper has a net charge of 2.10 μC. What fraction of the copper’s electrons has been removed? (Each copper atom has 29 protons, and copper has an atomic mass of 63.5.)

Respuesta :

Answer:

The fraction of the cooper's electrons that is removed is [tex]8.5222\times 10^{-11}[/tex].

Explanation:

An electron has a mass of [tex]9.1 \times 10^{-31}\,kg[/tex] and a charge of [tex]-1.6 \times 10^{-19}\,C[/tex]. Based on the Principle of Charge Conservation, [tex]-2.10\times 10^{-6}\,C[/tex] in electrons must be removed in order to create a positive net charge. The amount of removed electrons is found after dividing remove charge by the charge of a electron:

[tex]n_{R} = \frac{-2.10\times 10^{-6}\,C}{-1.6 \times 10^{-19}\,C}[/tex]

[tex]n_{R} = 1.3125 \times 10^{13}\,electrons[/tex]

The number of atoms in 56 gram cooper ball is determined by the Avogadro's Law:

[tex]n_A = \frac{m_{ball}}{M_{Cu}}\cdot N_{A}[/tex]

Where:

[tex]m_{ball}[/tex] - Mass of the ball, measured in kilograms.

[tex]M_{Cu}[/tex] - Atomic mass of cooper, measured in grams per mole.

[tex]N_{A}[/tex] - Avogradro's Number, measured in atoms per mole.

If [tex]m_{ball} = 56\,g[/tex], [tex]M_{Cu} = 63.5\,\frac{g}{mol}[/tex] and [tex]N_{A} = 6.022\times 10^{23}\,\frac{atoms}{mol}[/tex], the number of atoms is:

[tex]n_{A} = \left(\frac{56\,g}{63.5\,\frac{g}{mol} } \right)\cdot \left(6.022\times 10^{23}\,\frac{atoms}{mol} \right)[/tex]

[tex]n_{A} = 5.3107\times 10^{23}\,atoms[/tex]

As there are 29 protons per each atom of cooper, there are 29 electrons per atom. Hence, the number of electrons in cooper is:

[tex]n_{E} = \left(29\,\frac{electrons}{atom} \right)\cdot (5.3107\times 10^{23}\,atoms)[/tex]

[tex]n_{E} = 1.5401\times 10^{23}\,electrons[/tex]

The fraction of the cooper's electrons that is removed is the ratio of removed electrons to total amount of electrons when net charge is zero:

[tex]x = \frac{n_{R}}{n_{E}}[/tex]

[tex]x = \frac{1.3125\times 10^{13}\,electrons}{1.5401\times 10^{23}\,electrons}[/tex]

[tex]x = 8.5222 \times 10^{-11}[/tex]

The fraction of the cooper's electrons that is removed is [tex]8.5222\times 10^{-11}[/tex].