Respuesta :

Answer:

  (1, π/3 +2kπ), (-1, 4π/3 +2kπ) . . . where k is any integer

Step-by-step explanation:

Adding any multiple of 2π to the angle results in the same point in polar coordinates.

Adding 180° (π radians) to the point effectively negates the magnitude. As above, adding any multiple of 2π to this representation is also the same point in polar coordinates.

There are an infinite number of ways the coordinates can be written.

Answer:

All the polar coordinates of point P are [tex](1,2n\pi+\frac{\pi}{3})[/tex] and [tex](-1,(2n+1)\pi+\frac{\pi}{3})[/tex], where n is an integer.

Step-by-step explanation:

The given point is

[tex]P=(1,\frac{\pi}{3})[/tex]            .... (1)

If a point is defined as

[tex]P=(r,\theta)[/tex]          .... (2)

then the polar coordinates of point P is defined as

[tex](r,\theta)=(r,2n\pi+\theta)[/tex]

[tex](r,\theta)=(-r,(2n+1)\pi+\theta)[/tex]

where, n is an integer and θ is in radian.

From (1) and (2) we get

[tex]r=1, \theta=\frac{\pi}{3}[/tex]

So, the polar coordinates of point P are

[tex](r,\theta)=(1,2n\pi+\frac{\pi}{3})[/tex]

[tex](r,\theta)=(-1,(2n+1)\pi+\frac{\pi}{3})[/tex]

Therefore all the polar coordinates of point P are [tex](1,2n\pi+\frac{\pi}{3})[/tex] and [tex](-1,(2n+1)\pi+\frac{\pi}{3})[/tex], where n is an integer.