Consider the eigenvalue decomposition of a symmetric matrix A. Prove that two eigenvectors Vị and V; associated with two distinct eigenvalues li and l; of A are mutually orthogonal; that is, v. Vj = 0

Respuesta :

Lets consider the symmetric matrix [tex]A[/tex], and the two eigenvectors [tex]\vec{v}_i[/tex] and [tex]\vec{v}_j[/tex] such as:

[tex]A \vec{v} _i = \lambda_i \vec{v} _i[/tex]

[tex]A \vec{v} _j = \lambda_j \vec{v} _j[/tex]

with

[tex]\lambda_i \ne \lambda_j[/tex].

The dot product between [tex]\vec{v}_i[/tex] and [tex]\vec{v}_j[/tex] can be obtained with:

[tex]\vec{v}_i \cdot   \vec{v}_j = (\vec{v}_i )^t \vec{v}_j[/tex]

Using the first eigenvector equation we can find:

[tex]  \vec{v}_i = \frac{1}{\lambda_i} A \vec{v} _i [/tex]

Lets transpose it

[tex]  (\vec{v}_i)^t = (\frac{1}{\lambda_i} A \vec{v} _i)^t [/tex]

[tex]  (\vec{v}_i)^t =   (\vec{v} _i)^t A^t ((\frac{1}{\lambda_i})^t [/tex]

as [tex]\lambda_i[/tex] is an scalar

[tex]  (\vec{v}_i)^t =   (\vec{v} _i)^t A^t (\frac{1}{\lambda_i}) [/tex]

Now, as A is symmetric:

[tex]A^t = A[/tex]

so

[tex]  (\vec{v}_i)^t =   (\vec{v} _i)^t A (\frac{1}{\lambda_i}) [/tex]

Lets take the dot product again:

[tex]\vec{v}_i \cdot   \vec{v}_j = (\vec{v}_i )^t \vec{v}_j[/tex]

but this is :

[tex]\vec{v}_i \cdot   \vec{v}_j =  (\vec{v} _i)^t A (\frac{1}{\lambda_i}) \vec{v}_j[/tex]

[tex]\vec{v}_i \cdot   \vec{v}_j =  (\frac{1}{\lambda_i})  (\vec{v} _i)^t A \vec{v}_j[/tex]

[tex]\vec{v}_i \cdot   \vec{v}_j =  (\frac{1}{\lambda_i})  (\vec{v} _i)^t ( A \vec{v}_j )[/tex]

But, the parenthesis is equal to

[tex]A \vec{v} _j = \lambda_j \vec{v} _j[/tex]

so

[tex]\vec{v}_i \cdot   \vec{v}_j =  (\frac{1}{\lambda_i})  (\vec{v} _i)^t \lambda_j \vec{v} _j[/tex]

[tex]\vec{v}_i \cdot   \vec{v}_j =  (\frac{\lambda_j }{\lambda_i})  (\vec{v} _i)^t \vec{v}_j[/tex]

Now, subtracting the dot product

[tex]\vec{v}_i \cdot   \vec{v}_j  - \vec{v}_i \cdot   \vec{v}_j  =  (\frac{\lambda_j }{\lambda_i})  (\vec{v} _i)^t \vec{v}_j - (\vec{v} _i)^t \vec{v}_j = 0[/tex]

[tex] ( \frac{\lambda_j }{\lambda_i} - 1 ) (\vec{v} _i)^t \vec{v}_j= 0[/tex]

As the eigenvalues are distinct,  [tex] \frac{\lambda_j }{\lambda_i} [/tex] can't be 1, so

[tex] ( \frac{\lambda_j }{\lambda_i} - 1 ) \ne 0[/tex]

this implies

[tex] (\vec{v} _i)^t \vec{v}_j= 0[/tex]

so the eigenvectors are orthogonal.