A mass weighing 6 pounds stretches a spring 2 feet. The mass is attached to a dashpot device that offers a damping force numerically equal to β (β > 0) times the instantaneous velocity. Determine the values of the damping constant β so that the subsequent motion is overdamped, critically damped, and underdamped. (If an answer is an interval, use interval notation. Use g = 32 ft/s2 for the acceleration due to gravity.) (a) overdamped

Respuesta :

Answer with Step-by-step explanation:

Let m be the mass attached and k be the spring constant and [tex]\beta[/tex] be the positive  damping constant.The Newton's second law for the system is given by

[tex]m\frac{d^2x}{dt^2}=-kx-\beta \frac{dx}{dt}[/tex]

Where x(t) is the displacement from the equilibrium position.

The equation can be written as

[tex]m\frac{d^2x}{dt^2}+\beta\frac{dx}{dt}+kx=0[/tex]

[tex]\frac{d^2x}{dt^2}+\frac{\beta}{m}\frac{dx}{dt}+\frac{k}{m}x=0[/tex]

Weight=W=6 lb

s=2 feet

[tex]g=32 ft/s^2[/tex]

[tex]m=\frac{W}{g}=\frac{6}{32}=\frac{3}{16} slug[/tex]

[tex]k=\frac{W}{s}=\frac{6}{2}=3 lb/ft[/tex]

[tex]\frac{d^2x}{dt^2}+\frac{16\beta}{3}\frac{dx}{dt}+16 x=0[/tex]

[tex]2\lambda=\frac{16\beta}{3}\implies \lambda=\frac{8\beta}{3}[/tex]

[tex]\omega^2=\frac{k}{m}=16[/tex]

[tex]\lambda^2-\omega^2=\frac{64\beta^2}{9}-16[/tex]

a.The motion is overdamped when [tex]\lambda^2-\omega^2 >0 [/tex] or [tex]\beta > \frac{3}{2}[/tex]

b.The motion is crirtically damped when  [tex]\lambda^2-\omega^2 =0 [/tex] or [tex]\beta = \frac{3}{2}[/tex]

c. The motion is underdamped when  [tex]\lambda^2-\omega^2 <0[/tex] or [tex]\beta <\frac{3}{2}[/tex]

By using newton's second law for the system we got that for overdamped motion [tex]\lambda^{2}-\omega^{2} > 0 \text { or } \beta > \frac{3}{2}[/tex]

What is  Newton's second law for the system ?

Newton's second law for the system is that acceleration of an object produced by a net force is directly proportional to magnitude of the net force, and inversely proportional to the mass of the object.

Given that

Weight[tex]=W=6\ lb[/tex]

[tex]s=2 \ ft[/tex]

[tex]g = 32[/tex] [tex]ft/s^2[/tex]

We know that

[tex]m \frac{d^{2} x}{d t^{2}}=-k x-\beta \frac{d x}{d t}[/tex]

Here x(t) is the displacement from the equilibrium

Now we can write it as

[tex]\begin{aligned}&m \frac{d^{2} x}{d t^{2}}+\beta \frac{d x}{d t}+k x=0 \\&\frac{d^{2} x}{d t^{2}}+\frac{\beta}{m} \frac{d x}{d t}+\frac{k}{m} x=0\end{aligned}[/tex]

Now we can calculate m and k as

[tex]\begin{aligned}&m=\frac{W}{g}=\frac{6}{32}=\frac{3}{16} \mathrm{slug} \\&k=\frac{W}{s}=\frac{6}{2}=3 \mathrm{lb} / \mathrm{ft}\end{aligned}[/tex]

Now we can write equations as

[tex]\begin{aligned}&\frac{d^{2} x}{d t^{2}}+\frac{16 \beta}{3} \frac{d x}{d t}+16 x=0 \\&2 \lambda=\frac{16 \beta}{3} \Longrightarrow \lambda=\frac{8 \beta}{3} \\&\omega^{2}=\frac{k}{m}=16 \\&\lambda^{2}-\omega^{2}=\frac{64 \beta^{2}}{9}-16\end{aligned}[/tex]

Now for overdamped motion

[tex]\lambda^{2}-\omega^{2} > 0 \text { or } \beta > \frac{3}{2}[/tex]

By using newton's second law for the system we got that for overdamped motion [tex]\lambda^{2}-\omega^{2} > 0 \text { or } \beta > \frac{3}{2}[/tex]

To learn more about overdamped motion visit : https://brainly.com/question/15701473