Monthly sales of a particular personal computer are expected to decline at the following rate of S'(t) computers per​ month, where t is time in months and​ S(t) is the number of computers sold each month.

S'(t)= -30t^(2/3)

The company plans to stop manufacturing this computer when monthly sales reach 1,000 computers. If monthly sales now ​(t=​0) are 2,440 computers, find​ S(t). How long will the company continue to manufacture this​ computer?

Respuesta :

Answer:

[tex]S(t) = -18t^\frac{5}{3}+2440[/tex]

Company will take approximately 14 months

Step-by-step explanation:

Given function that shows the change rate of computers,

[tex]S'(t)=-30 t^{\frac{2}{3}}[/tex]

Where,

t = number of months

On integrating,

[tex]\int S'(t) = -30\int t^{\frac{2}{3}} dt[/tex]

[tex]S(t) = -30(\frac{t^{\frac{2}{3}+1}}{\frac{2}{3}+1})+C[/tex]

[tex]S(t) = -30 (\frac{t^{\frac{2+3}{3}}}{\frac{2+3}{3}})+C[/tex]

[tex]S(t) = -30(\frac{t^\frac{5}{3}}{\frac{5}{3}})+C[/tex]

[tex]S(t) = -30(\frac{3t^\frac{5}{3}}{5})+C[/tex]

[tex]S(t) =-18t^\frac{5}{3}+C[/tex]

According to the question,

S(0) = 2,440,

[tex]\implies -18(0)^\frac{5}{3}+C=2440\implies C = 2440[/tex]

Hence, the required function,

[tex]S(t) = -18t^\frac{5}{3}+2440[/tex]

If S(t) = 1,000,

[tex]-18t^\frac{5}{3}+2440=1000[/tex]

[tex]-18t^\frac{5}{3}=-1440[/tex]

[tex]t^\frac{5}{3}=80[/tex]

[tex]t = (80)^\frac{3}{5}\approx 13.86[/tex]