Evaluate the surface integral S F · dS for the given vector field F and the oriented surface S. In other words, find the flux of F across S. For closed surfaces, use the positive (outward) orientation. F(x, y, z) = y i − x j + z2 k S is the helicoid (with upward orientation) with vector equation r(u, v) = u cos v i + u sin v j + v k, 0 ≤ u ≤ 2, 0 ≤ v ≤ 5π

Respuesta :

Answer:

[tex]\int\limits^2_0 {} \, \int\limits^{5\pi}_0 {F(S(u,v)).N} \,dvdu[/tex] ≈ 3077.34

Explanation:

For calculating the flux of F (vector field) across the surface S, where

F(x,y,z) =  y i − x j + [tex]z^{2}[/tex] k

and S(u,v) =  u cos v i + u sin v j + v k,  0 ≤ u ≤ 2, 0 ≤ v ≤ 5π

We evaluate the following integral:  

[tex]\int\limits^2_0 {} \, \int\limits^{5\pi}_0 {F(S(u,v)).N} \,dvdu[/tex]

How in the surface

x = ucosv

y = usinv

z = v

Then

F(S(u,v)) = usinv i - ucosvj +[tex]v^{2}[/tex]k

The normal vector N is equal to

[tex]N = S_{u}XS_{v}[/tex]

Where:

[tex]S_{u} = <\frac{dx}{du} , \frac{dy}{du}, \frac{dz}{du}> = <cosv, sinv, 0>[/tex]

[tex]S_{v} = <\frac{dx}{dv} , \frac{dy}{dv}, \frac{dz}{dv}> = <-usinv, ucosv, 2v>[/tex]

N = <cosv, sinv, 0> X <-usinv, ucosv, 2v

N = <2vsinv, -2vcosv, u>

F(S(u,v)) .N = <usinv, -ucosv,[tex]v^{2}[/tex]>.<2vsinv, -2vcosv, u>

F(S(u,v)) .N = 2uv + u[tex]v^{2}[/tex]

Thus

[tex]\int\limits^2_0 {} \, \int\limits^{5\pi}_0 {2uv}+u v^{2}\,dvdu[/tex] ≈ 3077.34