One method for estimating abundance of animals is known as line-intercept sampling. The theory of this method, when applied to Alaska wolverines, predicts that the proportion p equals.453 of attempts to locate wolverine tracks should be successful. Suppose that biologists will make 100 attempts to locate wolverine tracks in random locations in Alaska. What is the mean of the sampling distribution of p with hat on top if the proportion predicted by line-intercept sampling is correct

Respuesta :

Answer:

0.6848

Step-by-step explanation:

Mean of \hat{p} = 0.453

Answer = 0.453

Standard deviation of \hat{p} :

= \sqrt{\frac{\hat{p}(1-\hat{p})}{n}} = \sqrt{\frac{0.453(1-0.453)}{100}} = 0.0498

Answer = 0.0498

P(0.0453 - 0.05 < p < 0.0453 + 0.05)

On standardising,

= P(\frac{0.0453-0.05-0.0453}{0.0498} <Z<\frac{0.0453+0.05-0.0453}{0.0498})

= P(-1.0044 < Z < 1.0044) = 0.6848

Answer = 0.6848

Using the Central Limit Theorem, it is found that the mean of the sampling distribution of the sample proportions is 0.453.

The Central Limit Theorem establishes that, for a normally distributed random variable X, with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the sampling distribution of the sample means with size n can be approximated to a normal distribution with mean [tex]\mu[/tex] and standard deviation [tex]s = \frac{\sigma}{\sqrt{n}}[/tex].

For a skewed variable, the Central Limit Theorem can also be applied, as long as n is at least 30.

For a proportion p in a sample of size n, the sampling distribution of the sample proportion will be approximately normal with mean [tex]\mu = p[/tex] and standard deviation [tex]s = \sqrt{\frac{p(1-p)}{n}}[/tex]

In this problem:

  • Sample of 100, thus [tex]n = 100[/tex].
  • Proportion of 45.3%, thus [tex]p = 0.453[/tex].

By the Central Limit Theorem, the mean is [tex]\mu = p = 0.453[/tex].

A similar problem is given at https://brainly.com/question/15413688