Very small changes in the solute concentrations in the various fluid compartments cause water to move from one compartment to another, which alters blood composition and blood pressure. How do the following physiological changes affect blood pressure?

a. Decrease water reabsorption
b. Decrease peripheral resistance
c. Vasodilation
d. Decrease salt intake
e. Decrease blood volume
f. Vasoconstriction
g. Increase peripheral resistance
h. Increase salt intake
i. Increase blood volume
j. Increase water reabsorption

Respuesta :

Answer:

a. Decrease water reabsorption : decrease blood pressure.

b. Decrease peripheral resistance : decrease blood pressure

c. Vasodilation : decrease blood pressure

d. Decrease salt intake : decrease blood pressure

e. Decrease blood volume : decrease blood pressure

f. Vasoconstriction : increase blood pressure

g. Increase peripheral resistance:  increase blood pressure

h. Increase salt intake:  increase blood pressure

i. Increase blood volume : increase blood pressure

j. Increase water reabsorption: increase blood pressure

Explanation:

  • Total peripheral resistance: This term refers to the resistance offered by the vascular system to the blood flow.  This resistance is a result of the friction between the blood and the vessel's walls. In other words, it is the opposition of the vessels to blood flow. The total peripheral resistance is the summary of all the bloody circuit resistances in the body. Those mechanisms that induce vasoconstriction conduce to an increase in total peripheral resistance, while mechanisms that induce vasodilation provoke a decrease in total peripheral resistance.    
  • Blood pressure: This term refers to the strength applied by the blood against the vessel walls as it flows.  This pressure is determined by the bombed blood strength and the volume as well as by the vessel size and flexibility. Blood pressure changes continuously according to the activity, temperature, diet, emotional state, among others.    
  • Salt ingestion causes an increase in plasmatic osmolarity, stimulates thirst, and hence, water ingestion. Sodium retains water, expanding the blood volume and causing an increase in vessel pressure.
  • The antidiuretic hormone, also known as vasopressin hormone, is released by changes in serum osmolarity or blood volume. Its function is to keep homeostasis and make kidneys conserve or keep water by concentrating urine and by reducing its volume. By these actions, the antidiuretic hormone stimulates water reabsorption, according to the organism´s needs.
  • Kidneys control blood pressure in many ways. If the pressure is elevated, kidneys produce the loss of salt and water, normalizing arterial pressure. But if pressure is low, kidneys conserve water.