b) Use Greens theorem to find∫x^2 ydx-xy^2 dy where ‘C’ is the circle x2 + y2 = 4 going counter clock wise.​

Respuesta :

It looks like the integral you want to find is

[tex]\displaystyle \int_C x^2y\,\mathrm dx - xy^2\,\mathrm dy[/tex]

where C is the circle x ² + y ² = 4. By Green's theorem, the line integral is equivalent to a double integral over the disk x ² + y ² ≤ 4, namely

[tex]\displaystyle \iint\limits_{x^2+y^2\le4}\frac{\partial(-xy^2)}{\partial x}-\frac{\partial(x^2y)}{\partial y}\,\mathrm dx\,\mathrm dy = -\iint\limits_{x^2+y^2\le4}(x^2+y^2)\,\mathrm dx\,\mathrm dy[/tex]

To compute the remaining integral, convert to polar coordinates. We take

x = r cos(t )

y = r sin(t )

x ² + y ² = r ²

dx dy = r dr dt

Then

[tex]\displaystyle \int_C x^2y\,\mathrm dx - xy^2\,\mathrm dy = -\int_0^{2\pi}\int_0^2 r^3\,\mathrm dr\,\mathrm dt \\\\ = -2\pi\int_0^2 r^3\,\mathrm dr \\\\ = -\frac\pi2 r^4\bigg|_{r=0}^{r=2} \\\\ = \boxed{-8\pi}[/tex]