(7)Figure 4 shows three charges: Q₁, Q₂ and Q3 . Determine the net force (Fnet) acting on Q3. (Hint: Draw a free body diagram of the forces to assist you with the calculation.)

(8)Figure 5 shows three charges arranged in a right angled formation.

(8.1)Draw a free body diagram of the forces that act on the -0,03 uC charge.

(8.2)Calculate each force that acts on the -0,03 uC charge.

(8.3) Find the magnitude and direction of the net force that acts on the 0,03 μC charge with the aid of a diagram and by calculations.

Help Please.​

7Figure 4 shows three charges Q Q and Q3 Determine the net force Fnet acting on Q3 Hint Draw a free body diagram of the forces to assist you with the calculatio class=

Respuesta :

Remember Coulomb's law: the magnitude of the electric force F between two stationary charges q₁ and q₂ over a distance r is

[tex]F = \dfrac{kq_1q_2}{r^2}[/tex]

where k ≈ 8,98 × 10⁹ kg•m³/(s²•C²) is Coulomb's constant.

8.1. The diagram is simple, since only two forces are involved. The particle at Q₂ feels a force to the left due to the particle at Q₁ and a downward force due to the particle at Q₃.

8.2. First convert everything to base SI units:

0,02 µC = 0,02 × 10⁻⁶ C = 2 × 10⁻⁸ C

0,03 µC = 3 × 10⁻⁸ C

0,04 µC = 4 × 10⁻⁸ C

300 mm = 300 × 10⁻³ m = 0,3 m

600 mm = 0,6 m

Force due to Q₁ :

[tex]F_{Q_2/Q_1} = \dfrac{k (6 \times 10^{-16} \,\mathrm C)}{(0,3 \, \mathrm m)^2} \approx \boxed{6,0 \times 10^{-5} \,\mathrm N} = 0,06 \,\mathrm{mN}[/tex]

Force due to Q₃ :

[tex]F_{Q_2/Q_3} = \dfrac{k (12 \times 10^{-16} \,\mathrm C)}{(0,6 \, \mathrm m)^2} \approx \boxed{3,0 \times 10^{-5} \,\mathrm N} = 0,03 \,\mathrm{mN}[/tex]

8.3. The net force on the particle at Q₂ is the vector

[tex]\vec F = F_{Q_2/Q_1} \, \vec\imath + F_{Q_2/Q_3} \,\vec\jmath = \left(-0,06\,\vec\imath - 0,03\,\vec\jmath\right) \,\mathrm{mN}[/tex]

Its magnitude is

[tex]\|\vec F\| = \sqrt{\left(-0,06\,\mathrm{mN}\right)^2 + \left(-0,03\,\mathrm{mN}\right)^2} \approx 0,07 \,\mathrm{mN} = \boxed{7,0 \times 10^{-5} \,\mathrm N}[/tex]

and makes an angle θ with the positive horizontal axis (pointing to the right) such that

[tex]\tan(\theta) = \dfrac{-0,03}{-0,06} \implies \theta = \tan^{-1}\left(\dfrac12\right) - 180^\circ \approx \boxed{-153^\circ}[/tex]

where we subtract 180° because [tex]\vec F[/tex] terminates in the third quadrant, but the inverse tangent function can only return angles between -90° and 90°. We use the fact that tan(x) has a period of 180° to get the angle that ends in the right quadrant.